Cisoid parameter estimation in the colored noise case: asymptotic Cramer-Rao bound, maximum likelihood, and nonlinear least-squares

نویسندگان

  • Petre Stoica
  • Andreas Jakobsson
  • Jian Li
چکیده

| The problem of estimating the parameters of complex-valued sinusoidal signals (cisoids, for short) from data corrupted by colored noise occurs in many signal processing applications. We present a simple formula for the asymptotic (large-sample) Cram er-Rao bound (CRB) matrix associated with this problem. The maximum likelihood method (MLM), which estimates both the signal and noise parameters, attains the performance corresponding to the asymptotic CRB, as the sample length increases. More interestingly , we show that a computationally much simpler nonlinear least-squares method (NLSM), which estimates the signal parameters only, achieves the same performance in large samples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Amplitude Estimation of Multichannel Signal in Spatially and Temporally Correlated Noise

This paper examines the problem of complex amplitude estimation of a multichannel signal in the presence of colored noise with unknown spatial and temporal correlation. A number of amplitude estimators are developed, including the optimum maximum likelihood (ML) estimator, which involves nonlinear optimization, and several suboptimal but computationally more efficient estimators based on least-...

متن کامل

Cramer-Rao bounds and maximum likelihood estimation for random amplitude phase-modulated signals

The problem of estimating the phase parameters of a phase-modulated signal in the presence of colored multiplicative noise (random amplitude modulation) and additive white noise (both Gaussian) is addressed. Closed-form expressions for the exact and large-sample Cramér–Rao Bounds (CRB) are derived. It is shown that the CRB is significantly affected by the color of the modulating process when th...

متن کامل

Posterior Cramer-Rao bounds for discrete-time nonlinear filtering

A mean-square error lower bound for the discretetime nonlinear filtering problem is derived based on the Van Trees (posterior) version of the Cramér–Rao inequality. This lower bound is applicable to multidimensional nonlinear, possibly non-Gaussian, dynamical systems and is more general than the previous bounds in the literature. The case of singular conditional distribution of the one-step-ahe...

متن کامل

Approximate estimation of the Cramer-Rao Lower Bound for Sinusoidal Parameters

-In this paper we present new approximation expressions for the Cramer-Rao Lower Bound on unbiased estimates of frequency, phase, amplitude and DC offset for uniformly sampled signal embedded in white-Gaussian noise. This derivation is based on well-known assumptions and a novel set of approximations for finite series of trigonometric functions. The estimated Cramer-Rao Lower Bounds are given i...

متن کامل

Iterative quadratic maximum likelihood based estimator for a biased sinusoid

The problem of parameter estimation of a single sinusoid with unknown offset in additive Gaussian noise is addressed. After deriving the linear prediction property of the noise-free signal, the maximum likelihood estimator for the frequency parameter is developed. The optimum estimator is relaxed according to the iterative quadratic maximum likelihood technique. The remaining parameters are the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Signal Processing

دوره 45  شماره 

صفحات  -

تاریخ انتشار 1997